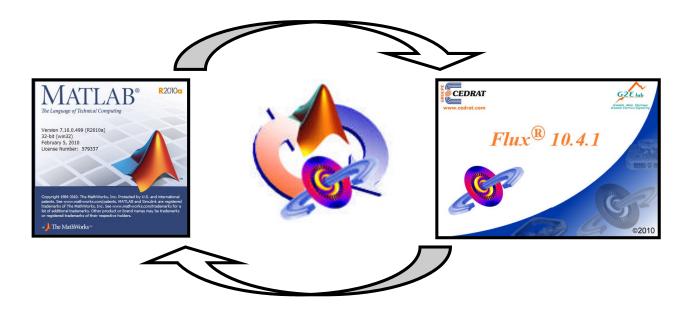
6. New features regarding co-simulation Flux-Simulink

Introduction

FLUX and Matlab Simulink are software tools that are renowned in their respective fields of application. They are now linked for direct co-simulation through a new library, called «Coupling with Flux ».

Contents

This chapter contains the following topics:


Topic	See Page
Co-simulation Flux-Simulink: About	108
Co-simulation Flux-Simulink: Preparation of the Flux project	109
Co-simulation Flux-Simulink: Preparation of the Simulink	111
model	
Co-simulation Flux-Simulink: Example	116

6.1. Co-simulation Flux-Simulink: About

Introduction

Prior to this Flux version, Cedrat offered a coupling between Flux and Matlab Simulink only for the historical version of Flux2D.

Starting with V 10.4, Flux offers a new coupling with Matlab Simulink, compatible with the new Flux2D version, with Flux 3D and with Flux Skewed. This coupling is available for all the transient applications.

Implementation The procedure for coupling Flux and Matlab Simulink is as follows:

Stage	Software	Description	
1	Flux	Preparation of the Flux project: • standard description: geometry, mesh and physics • specific description: creation of input and output parameters necessary to the coupling	
2	Flux	Generation of component of the Flux – Matlab Simulink coupling	
3	Supervisor Flux	Opening of Matlab–Simulink starting from Flux supervisor	
4	Matlab	Opening of Simulink	
5	Simulink	Preparation of Simulink (*mdl) model: • adding and definition of Flux – Simulink coupling library • adding, definition and connection of other necessary libraries around the coupling block	
6	Simulink	Configuration of the simulation parameters	
7	Simulink	Launching of the simulation	
8	Flux / Simulink	Post processing of results	

PAGE 108 USER'S GUIDE

6.2. Co-simulation Flux-Simulink: Preparation of the Flux project

Introduction

Co-simulation requires that the standard description (geometry, mesh, physics) of the Flux project has been done. To prepare the coupling between Flux and Simulink, it is necessary to define, in Flux, the desired input and output parameters, in order to generate a coupling component file.

Flux Inputs

Several types of quantities can appear amongst the input parameters :

- electrical quantities (ex. resistance, voltage, current...)
- mechanical quantities (ex. torque, speed, position,...)
- geometric (air gap,...)

As the coupling between Flux and Matlab-Simulink uses multiphysics cosimulation, the input parameters must be defined as **I/O Parameters of multiphysics type**.

Flux Outputs

We can find the exact same quantity types as with the input parameters; namely the electrical, mechanical and geometric quantities.

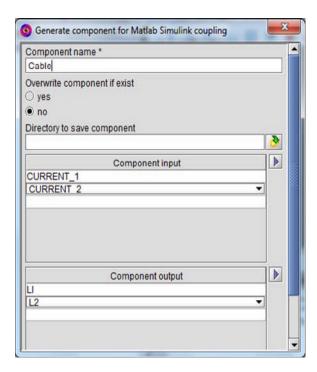
The output parameters **must not** be of the multiphysics type.

An output parameter can be:

- a geometric parameter
- a I/O non multiphysics parameter
- a predefined parameter of a mechanical assembly
- a sensor

The coupling component

The coupling component file is necessary in order to ensure the transfer of information from the Flux project to Simulink. This component data is described in the *.F2MS file.


Once the necessary input and output parameters for the coupling have become available, the user must generate a component:

• by clicking on the **Generate component for Matlab Simulink coupling** in the **Solve** module

The dialogue box "Generate component for Matlab Simulink coupling" is presented below:

Continued on next page

The coupling component (continued)

Having generated the coupling component:

- A file [ComponentName].F2MS is created by default in the current directory.
- A Flux project [ComponentName]F2MS.FLU is created and it should have the same name as the .FLU accessed from Simulink during the solving process.

Upon launching of the solving process via Simulink, the corresponding project Flux is registered with the following name :

[ComponentName]F2MS_SOLVED.FLU

*.F2MS file

This file contains the information necessary for Simulink to be able to automatically detect:

- the version of Flux
- the version of F2MS
- the dimension
- the inputs and the outputs

Solving Scenario

No solving scenario defined in Flux will be taken into consideration by Simulink. It is Simulink that manages the time steps of the simulation imposing them to Flux during the co–simulation.

PAGE 110 USER'S GUIDE

6.3. Co-simulation Flux-Simulink: Preparation of the Simulink model

Introduction

Now that the preparation for the Flux project has been done, the preparation of the Simulink model can be carried out.

Upon the opening of Matlab Simulink via the Flux supervisor (compulsorily), the new library « **Coupling with Flux** » is added to the Simulink library. The user must prepare **the Simulink model** by adding and characterizing the coupling library and equally the necessary libraries for the construction of the desired model.

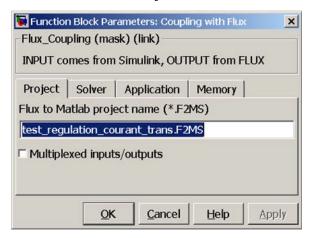
Simulink library

The new library of Flux –Matlab Simulink coupling is added to the list of old libraries listed for the historical Flux2D.

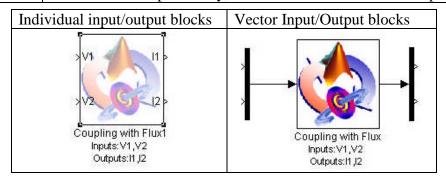
The next figure shows the location of the new library added in the Simulink library.

Element	Function	
Flux_Link	Library that contains the Flux – Matlab Simulink	
Library	couplings. This library is automatically accessible with	
	Simulink Library Browser only if the opening of the	
	Matlab Simulink has been made through the Simulink	
	link in the Flux supervisor.	
New Coupling	Permits the coupling between Flux and Simulink.	
Blocks	This section is compatible with the new Flux2D, Flux3D	
	and FluxSkew on the 32 and 64 Bits system.	
Legacy Coupling	Permits the coupling between Flux and Simulink.	
Blocks	This library is compatible only with the historical	
	Flux2D version on the 32 Bits system.	

Continued on next page

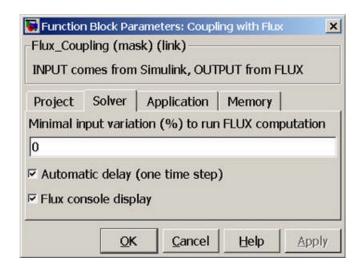

« Coupling with Flux » block

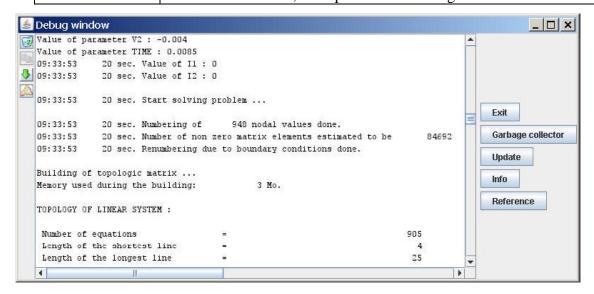
The new block «Coupling with Flux» available in Simulink has several properties which are classified in different tabs :


- Project
- Solver
- Application
- Memory

The content of each of these tabs is detailed in the following sections.

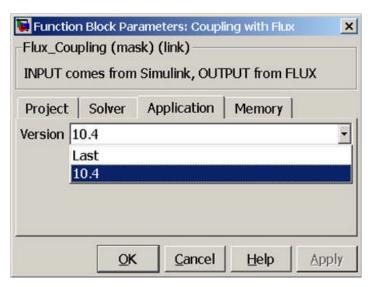
« **Project** » tab Here is the content of the «Project» tab:


Element	Function
Flux to Matlab	Permits the user to fill in the name of the project *.F2MS (Flux to
project name	Matlab Simulink) that is the same as the Flux project name to ensure
(*.F2MS)	successful coupling between the two software.
	Attention to correctly enter the extension .F2MS
Multiplexed	Permits the user to choose the representation of the inputs/outputs:
inputs/outputs	• an individual representation (singular input/output block)
	a connection for each input and output parameter.
	• a « vector » representation (multiple, itemized input/output block) a common connection for all the input and output parameters and
	one connection common to all the output parameters.
	The user will have to add:
	- a Mux input library, with the desired number of inputs.
	– a Demux output library, with the desired number of outputs.


Continued on next page

PAGE 112 USER'S GUIDE

« Solver » Here are the contents of the «Solver» tab: Tab

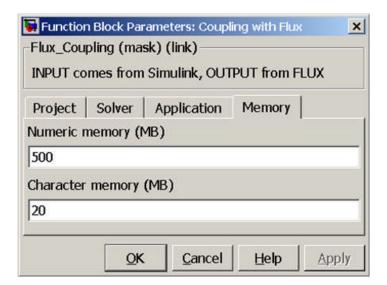


Element	Function	
Minimal input	Permits to define a percentage of variation of the input parameters	
variation (%) to	between two calculation steps under which the Flux calculation	
run FLUX	will not be carried out. What matters is to be able to carry out	
computation	several Simulink time steps, without systematically carrying out a	
	Flux calculation.	
Automatic delay	Permits to Flux to calculate the output parameters with a delay of	
(one time step)	one step and to transmit them to Simulink for the calculation of	
	the following step.	
	This automatic delay mode is indispensable in case of retroaction	
	between output and input to avoid the algebraic loops.	
	However, if there is no retroaction, the automatic delay should not	
	be activated, as this would imply a delay of one step upon the	
	output parameters.	
Flux console	Permits to display a supplementary window in which the on going	
display	actions in Flux are entered. This is the equivalent of the Historical	
	zone visible in Flux, zone placed below the geometric view.	

Continued on next page

« Application » Here are the contents of the « Application » tab: **tab**

Element	Function
Version	Permits to choose the Flux version to be coupled with Simulink
	during the solving process. The user has a choice between:
	• 10.4 Flux version, which is the first version with which the new
	coupling Flux – Simulink is available.
	• Last version, which permits to choose the most recently
	installed version.


The information about the application (2D, 3D or Skew) are in the file *.F2MS and they are automatically taken into consideration.

The same for the static initialization. It is activated or not in the Flux project upon defining the application.

Continued on next page

PAGE 114 USER'S GUIDE

« Memory » tab Here contents of the « Memory » tab:

Element	Function	
Numeric	Permits to define the numeric memory allocated for Flux	
memory	remitis to define the numeric memory anocated for Mux	
Character	Permits to define the character memory allocated for Flux	
memory		

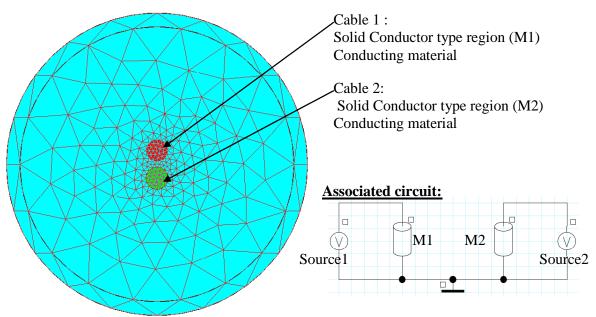
Configuration of simulation parameters

The configuration of the simulation parameters is done only via Simulink, in the menu **Simulation** \rightarrow **Configuration parameters**

6.4. Co-simulation Flux-Simulink: Example

Introduction

To permit to the user to implement the co-simulation between Flux and Matlab-Simulink, a detailed example, with the main stages to be implemented, is given in the following sections.


Example description

The example represents two cables, one supplied with sinusoidal voltage, the other with triangular voltage.

If the cables are placed close enough, there will be a electromagnetic influence of one upon the other, and the currents will not be perfectly sinusoidal or triangular, respectively.

Therefore, the purpose of the study is to regulate the current in the cable supplied with sinusoidal voltage to obtain a sinusoidal current.

Flux project The geometry, mesh and physics are given below.

Continued on next page

PAGE 116 USER'S GUIDE

Preparation of I/O parameters in Flux

The input and output parameters are described as follows:

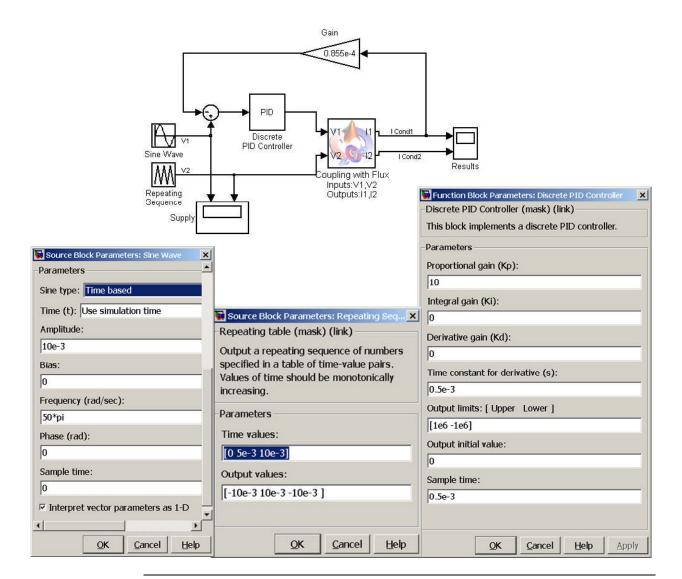
	name	Description	Type	Value / formula
Input parameters	V1	Supply voltage of the cable 1 associated to the voltage source Source1	I/O parameter, multiphysics	Reference value = 0
	V2	Supply voltage of the cable 2 associated to the voltage source Source2	I/O parameter, multiphysics	Reference value = 0
Output parameters	I1	Current in the cable 1 (current in the solid conductor M1)	I/O parameter defined by a space formula	I(M1)
	I2	Current in the cable 2 (current in the solid conductor M2)	I/O parameter defined by a space formula	I(M2)

Generation of component in Flux

To generate the component of the Flux – Matlab Simulink coupling:

Step	Action
1	Open the dialogue box :
	• Click on Generate component for Matlab Simulink coupling
	in the Solve module
2	Define the name of component (for example CABLES)
3	Choose the input parameters :
	• Select V1
	• Select V2
4	Choose the output parameters:
	• Select I1
	• Select I2
5	Validate by clicking on OK
\rightarrow	A CABLES.F2MS file has been created.
	The Flux project has been duplicated and registered under the
	name : CABLESF2MS.FLU

Continued on next page


Preparation of the Simulink model

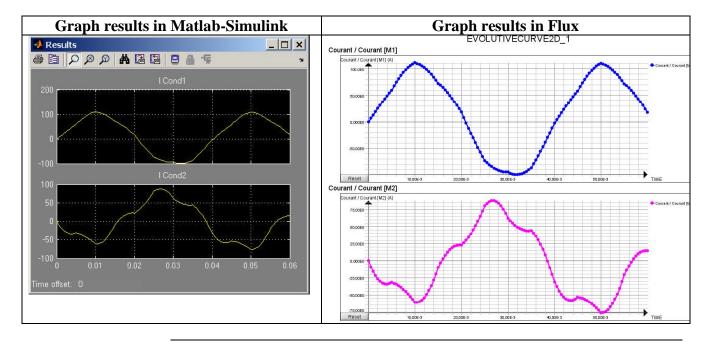
To prepare the Simulink model :

Step	Action
1	Open Matlab:
	• Starting from the Flux supervisor in the Solve module, click on
	Simulink
2	Open Simulink by clicking on
\rightarrow	The Simulink library is open.
3	Make a new model:
	• Point on New and click on Model in the menu File
\rightarrow	A blank window will appear
4	Register the model:
	• Click on Save in the menu File
	• Allocate a name (for example model_cables)
4	Place the section « Coupling with Flux »
	• Take the library « Coupling with Flux » in the library
	Flux_Link and place it in the window model_cables
5	Characterize the section « Coupling with Flux »:
	• double click on the section
	• in the tab Project :
	 allocate the name of the project CABLES.F2MS
	- tick or not Multiplexed inputs/outputs (in function of the
	desired representation)
	• in the tab Solve :
	- tick the case Automatic delay
	- tick the case Flux console display
	• validate the characterization of the library by clicking on OK
6	Place, characterize and connect the other necessary libraries
	according to the model in the figure below.
7	Save the model by clicking on Save in the menu File
\rightarrow	The preparation of the Simulink model is complete.

Continued on next page

PAGE 118 USER'S GUIDE

Simulation configuration


Configure the simulation parameters with a time interval from 0 to 0.6 s and the time step set at 0.001 s and launches the solving process.

During the solving process the actions carried out in Flux are visible in the **Flux console**, which has appeared in a new window, and the information on the solved steps are also displayed in the window "**Command Window**" of **Matlab**.

Continued on next page

Analysis of results

The results can be analyzed in Matlab – Simulink, as well as from Flux in the project **CABLESF2MS_SOLVED.FLU**

PAGE 120 USERS GUIDE